jump to navigation

The Large Hadron Collider and its Relation to Cosmic Rays February 18, 2009

Posted by bmwcarey in Philosophy of physics, Science & society.

The Large Hadron Collider is considered an impending catastrophe by some people.  While it is a milestone of scientific achievement and a portrayal of humankind’s resolute endeavor to compose ourselves of a greater knowledge and understanding of the nature of the universe, the LHC experiment is neither new nor infrequent in nature.

The concept behind this immense experiment is to provide an adequate replication of the nature of matter shortly after the Big Bang, a time in which particles propagated and collided at astonishing kinetic energies and, consequently, considerable velocities.  The scientists behind CERN mean to collide two high-energy particles and observe the underlying mechanisms.  Speculations pertaining to the possible materialization of microscopic black holes and other disastrous scenarios instill fear in some people.  Though matter already behaved in this fashion 13.7 billion years ago, we require more compelling and currently observable evidence to justify the safety of the LHC.  Adrian Kent explains that counterarguments of catastrophic mechanisms, “show that the existence of the catastrophe mechanism is highly improbable, either because closer analysis shows that the proposed mechanism does in fact contradict well established physical principles, or because its existence would imply effects which we should almost certainly have observed but have not.”

Betelgeuse, a star of approximately 20 solar masses.  Image courtesy of NASA/ESA.  Image found through Wikipedia.

Betelgeuse, a star of approximately 20 solar masses. Imaged in ultraviolet. Image courtesy of NASA/ESA. Image found through Wikipedia.

Consider a massive star of more than eight solar masses.  Stars spend most of their lifetime in the main sequence, a period in which hydrogen fusion is active in the star core.  Massive stars are also capable of fusing heavier nuclei, such as helium into carbon, carbon into oxygen, and so on.  However, once these stars develop an iron core, they are incapable of conducting further core fusion; iron does not generate nuclear energy.  The degeneracy pressure of the core cannot sustain itself against the gravitational force of the star’s outer layers.  The inert iron core eventually collapses, releasing an overwhelming amount of energy and disseminating the outer layers in a supernova.

The Crab Nebula, a supernova remnant.  Courtesy of NASA/ESA.  Image found through Wikipedia.

The Crab Nebula, a supernova remnant. Courtesy of NASA/ESA. Image found through Wikipedia.

Within the hot remnants of supernova explosions, particles collide with each other until they escape at relativistic speeds.  These particles, identified as cosmic rays, may have kinetic energies greater than 10^20 eV, a figure of much greater magnitude than the maximum energy of LHC particles, 7 x 10^12 eV.  Earth’s atmosphere is bombarded by cosmic rays on a regular basis; occasionally, they even penetrate the atmosphere and reach the surface.  Despite this frequent occurrence, we have yet to witness the destruction of Earth, or other astronomical bodies, by means of microscopic black holes emerging from collisions between cosmic rays and other particles.  However, this does not undermine the LHC; it is a feat to be able to observe high-energy particle collisions in controlled experiments.

It is worth mentioning that the scientists behind CERN are also ordinary people.  They too have families, friends, and other attachments to the world around us.  While they are not immune to conducting mistakes, it would be erroneous to think they disregard the safety of others.

Through the LHC, scientists hope to uncover the elusive Higgs Boson, a theoretical particle recognized as the origin of mass.  Other aspirations include breakthroughs for String Theory and a more concrete understanding of dark matter.  CERN suffered a setback when an incident befell the LHC on September 19, but they currently intend to see the collider operational by late spring or early summer.

And now, the LHC rap!


Bennett, Jeffrey O., Megan Donahue, Nicholas Schneider, and Mark Voit. Cosmic Perspective: Stars, Galaxies and Cosmology. San Fransisco: Benjamin Cummings, 2007.

Adrian Kent. “A Critical look at risk assessments for global catastrophes” (pdf). 

CERN – The Large Hadron Collider.” CERN – European Organization for Nuclear Research.

Crab Nebula.” Wikipedia, the free encyclopedia. 

Betelgeuse.” Wikipedia, the free encyclopedia.

%d bloggers like this: